

FiberMINI® AutoFocus (AF) is a compact, lightweight design optimized for flat sheet Fiber Laser cutting. The head is capable of processing a wide range of materials with automatic, programmable focus. FiberMINI® AF delivers both user-friendly operation and reliable performance at an attractive price.

Features

- · Compact, lightweight design
- Flexible design allows a wide range of spot sizes
- 14 mm of programmable autofocus to set focus position
- Temperature sensors protect optics and minimize the chance of overheating
- · Quick, toolless access to the sealed cover glass
- End-user serviceable focus lens
- · Sealed optics and purge air option
- · Nozzle cooling for use with highly reflective materials
- · Laser pierce, air blast option

Laser Mechanisms' ultra-compact FiberMINI® AF easily integrates into modern, three-axis laser cutting machine designs.

Specifications

CUTTING HEAD	
Power Rating	up to 4 kW
Nominal Focusing Lens (Fused Silica, λ 1025-1080 nm)	100 mm, 125 mm, 150 mm, 200 mm
Clear Aperture	25 mm
Nozzle Orifices	1 mm to 4 mm
Nozzle Styles	Single Orifice, Double, Multi-Hole Shower, Custom
Assist Gas Pressure	up to 20 BAR
Autofocus Response Time	14 msec./mm
Focal Point To Nozzle Adjustment	-9 mm to +5 mm
Weight	~2.4 kg
LASER MECH® COLLIMATOR	
Nominal Collimating Lens (Fused Silica, λ 1025-1080 nm)	35 mm, 60 mm, 75 mm, 100 mm
Clear Aperture	25 mm
Fiber Connection (Others Available On Request)	QBH (HLC-8), QD (LLK-D), LLK-B, PIPA-Q
HEIGHT SENSOR	
Standoff Distance Range (1 mm Recommended)	0.2 mm to 8.0 mm
Calibration	Auto Calibrating
Response Time	<1 msec.
Temperature Stability	±5% of Standoff Setting, 0° to 45° C
Power Requirement	24 V
Output (Optimized Curve For Flat Metal or Linear Signal)	0-10 V Analog

FiberMINI® AF

FiberMINI® AF shown with 100 mm collimator and 125 mm focal length. Other configurations available upon request.

Laser Mechanisms, Inc.

25325 Regency Drive Novi, Michigan 48375 Phone: (248) 474-9480 Fax: (248) 474-9277

Laser Mechanisms Europe NV

Groenestaakstraat 59 B-9030 Mariakerke, Belgium Phone: +32 (0)92 18 70 70 Fax: +32 (0)92 18 70 79

Internet

Web: www.lasermech.com E-Mail: info@lasermech.com